
Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

UPS PIco
Uninterruptible Power Supply

with Peripherals and I2C control Interface
for use with

Raspberry Pi® B+, A+, B, and A

HAT Compliant

 “Raspberry Pi” is a trademark of the Raspberry Pi® Foundation

Bootloader and File Safe Shutdown Functionality

Version 1.0

© PiModules & ModMyPi

Intelligent Modules for your Raspberry Pi®

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

Document Revisions

Version Date Modified

Pages

Modified Sections Comments

1.0 18/01/2015 none none First Public Document Release

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

Document Revisions... 2

Credits ... 4

System Overview ... 5

Introduction ... 5

Applications ... 6

Features ... 6

UPS Pico Bootloader .. 7

Setting Up the RaspberryPi® Serial Port for other applications (i.e. Bootloader) 7

Setting-up the I2C interface and RTC .. 10

Running the UPS Pico Bootloader ... 12

RaspberryPi® File Safe Shutdown Procedure and RaspberryPi® RUN 14

Table of Figures

Figure 1 UPS PIco Jumpers .. 9

Figure 2 Minicom screenshot while the UPS PIco restarts .. 9

Figure 3 I2C UPS PIco Interface and Simulated DS1307 Clock detection 11

Figure 4 UPS PIco Simulated DS1307 Clock sudo bash commands execution 11

Figure 5 UPS PIco Keys .. 13

Figure 6 UPS PIco uploading new firmware screenshot .. 13

Figure 7 UPS PIco Jumpers .. 14

Figure 8 File Safe Shutdown and RUN Python Script - picofssd.py ... 16

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

Credits
Our Company would like to thank the following people that reviewed and, many times,

commented and corrected this document before we released it to the public domain.

Marcello Antonucci from Italy

Vit Safar from Slovakia - who provide the initial version of python bootloader script

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

System Overview

Introduction

The UPS PIco is an advanced uninterruptible power supply for the Raspberry Pi® that

adds a wealth of innovative power back-up functionality and development features

to the innovative microcomputer!

The standard UPS PIco is equipped with a 300mAh LiPO battery specially designed to

enable safe shutdown during a power cut. Additionally, this can be easily upgraded

to the extended 3000mAh version, which enables prolonged use of a Raspberry Pi

for up to 8 hours without a power supply connected!

The UPS PIco features an embedded measurement system that continuously checks

the powering voltage of the Raspberry Pi®. When the cable power on the Raspberry

Pi® is absent, insufficient, or the device detects a power failure, the UPS Pico

automatically switches to the unit’s battery source. The module then continues to

check the voltage on the Pi and switches automatically back to the regular cable

supply when power is once again available.

The UPS PIco is powered and the battery pack intelligently charged via the GPIO pins

on the Raspberry Pi®, so no additional cabling or power supply is required.

The UPS PIco is designed to be 100% compliant with HAT standards for the Raspberry

Pi® B+ and A+, and is mechanically compatible with the original Raspberry Pi®

models A and B when an extension header is used. In addition to this, because the

UPS PIco requires no external powering and fits within the footprint of the

Raspberry Pi®, it is compatible with most cases.

The UPS PIco can also be equipped with an optional Infra-Red Receiver which is

routed directly to GPIO18 via the PCB. This opens the door for remote operation of

the Raspberry Pi®and UPS Pico!

Finally, the UPS Pico features an implemented Automatic Temperature Control

PWM fan controller, and can be equipped with a micro fan kit, which enables the

use of the Raspberry Pi® in extreme conditions including very high temperature

environments.

http://www.raspberrypi.org/introducing-raspberry-pi-hats/

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

Applications

UPS PIco is equipped with plenty of features which make it an extremely useful tool

for Raspberry Pi® project development. It not only provides powering continuity, but

also offers extra user programmable LEDs, sensors, buttons and I/O’s. The unit also

features a dedicated 10-bit analogue to digital converter with two channels making

it the perfect board for remote and unmanned sensor deployment. These extra

features result in the UPS Pico being a superior all-in-one device, perfect for many

innovative projects and embedded applications.

Features

The list of features of the UPS PIco is as follows:

¶ Raspberry Pi B+ HAT Compliant

¶ Plug and Play

¶ Smart Uninterruptible Power Supply (UPS)

¶ Integrated LiPO Battery (8-10 Minutes of Power Back-Up)

¶ Intelligent Automatic Charger

¶ No Additional External Power Required

¶ Optional 3000 mAh Battery for 8 Hours Run-Time (Not Included)

¶ 5V 2A Power Backup (Peak Output 5V 3A)

¶ Integrated Software Simulated Real Time Clock (RTC) with Battery Back-Up

¶ File Safe Shutdown Functionality

¶ Raspberry Pi B+ Activity Pin

¶ PWM fan control (Fan Not Included)

¶ 2 User Defined LEDs

¶ 2 User Defined Buttons

¶ Integrated Buzzer for UPS and User Applications

¶ Status Monitoring - Powering Voltage, UPS Battery Voltage and Temperature

¶ I2C PICo Interface for Control and Monitoring

¶ RS232 Raspberry Pi Interface for Control and Monitoring

¶ XTEA Based Cryptography User Software Protection

¶ 2 Level Watch-dog Functionality with FSSD and Hardware Reset

¶ Raspberry Pi B+ Hardware Reset Button via Spring Test Pin (Not Included)

¶ Jumpers for Raspberry Pi B+ Pin Functionality Selection

¶ Stackable Header for Add-On Boards

¶ Boot Loader for Live Firmware Update

¶ Compatible with Intelligent IR Remote Power ON/OFF (PowerMyPi)

¶ Integrated ESD-Protected 2 Channel A/D 10 Bit Converters 0-5.2V

¶ Integrated ESD-Protected 1-Wire Interface

¶ Labeled J8 Raspberry Pi B+ GPIO Pins for Easy Plug & Play

¶ Infra Red Receiver Sensor Interface (IR Not Included)

¶ Upgradable with PIco Add-on Boards

¶ Fits Inside Most Existing Cases

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

UPS Pico Bootloader
UPS PIco is equipped with bootloader functionality. The bootloader is a functionality that

allows the user to keep the firmware up-to-date by downloading newer versions from the

company website. This ensures that the UPS PIco is flexible and always with the latest

version of firmware. New versions of the firmware are announced on the

www.pimodules.com and can be downloaded by the user. The UPS PIco firmware is smart

enough and automatically recognizes which hardware model of UPS PIco it is running on,

adjusting the available functionality set to it. The boot loading procedure uses the

Raspberry Pi® serial interface. Therefore the user need to take care to keep this inteface free

from any other applications during the firmware uploading process. A few simple steps are

need to make the UPS Pico and Raspberry Pi® cooperative in order to upload the newer

firmware. A detailed description how to do this is provided in the next sections.

3ÅÔÔÉÎÇ 5Ð ÔÈÅ 2ÁÓÐÂÅÒÒÙ0É΅ 3ÅÒÉÁÌ 0ÏÒÔ ÆÏr other applications (i.e.

Bootloader)

By default Raspberry Pi®’s serial port is configured to be used for console input/output.

While this is useful if you want to login using the serial port, it means you can't use the Serial

Port in your programs. To be able to use the serial port to connect and talk to other devices,

the serial port console login needs to be disabled.

Needless to say you will need some other way to login to the Raspberry Pi®, it is suggested

doing this over the network using an SSH connection.

Disable Serial Port Login

To enable the serial port for your own use you need to disable login on the serial port. There

are two files that need to be edited

The first and main one is /etc/inittab. You can edit it by issuing this command1:

$sudo nano /etc/inittab

This file has the command to enable the login prompt and this need to be disabled. Edit the

file and move to the end of the file. You will see a line similar to:

T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

Disable it by adding a # character to the beginning. Save the file.

#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

1
 throughout this manual we will assume that text files are edited with nano and that the user knows how to save the file,

after editing. However, the user is free to use any other text editor that he or she feels comfortable with.

http://www.pimodules.com/

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

Disable Boot-up Info

When the Raspberry Pi® boots-up, all the boot-up information is sent to the serial port.

Disabling this boot-up information is optional and you may want to leave this enabled as it is

sometimes useful to see what is happening at boot-up. If you have a device connected (i.e.

Arduino) at boot-up, it will receive this information over the serial port, so it is up to you to

decide whether or not this is a problem.

You can disable it by editing the file /boot/cmdline.txt:

 sudo nano / boot/ cmdline.txt

The contents of the file look like this

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200 console=tty1

root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait

Remove all references to ttyAMA0 (which is the name of the serial port). The file will now

look like this:

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4

elevator=deadline rootwait

Reboot

In order to enable the changes you have made, you will need to reboot the Raspberry Pi

$sudo shutdown -r now

Test the Serial Port

A great way to test out the serial port is to use the minicom program. If you don’t have this

one installed, run

$sudo apt-get install minicom

Run up minicom on the Raspberry Pi® using

minicom -b 38400 -o -D /dev/ttyAMA0

Make sure that proper jumpers are installed (RXD0 and TXD0) and tht no other boards using

the serial port are placed on the top of the UPS PIco.

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

Figure 1 UPS PIco Jumpers

By pressing the UPSR (the UPS Reset Button) you should see on the minicom screen the UPS

PIco welcome message after reset. This will ensure you that the UPS PIco is cooperating

properly with your Raspberry Pi ®.

Figure 2 Minicom screenshot while the UPS PIco restarts

Be careful when pressing the UPSR (the UPS Reset Button) to avoid pressing of the RPIR (the

Raspberry Pi® Reset Button), because it will make also a reset to the Raspberry Pi® , and

cause immediately cutting of the communication between UPS PIco and Raspberry Pi® .

NOTE1: Resetting of the UPS PIco does not reset the Raspberry Pi®

NOTE2: Resetting of the UPS PIco does reset the simulated RTC to default values

NOTE3: Resetting of the Raspberry Pi® does not reset the UPS PIco (the RTC is still working with the proper
values)

NOTE4: Resetting of the Raspberry Pi® is possible only if the Reset Gold Plated Pin is installed (soldered)

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

Setting-up the I2C interface and RTC

The I2C Ports on the Raspberry Pi® are not enabled by default. Follow these steps to enable

the I2C port and then the RTC communicating trough I2C with RaspberryPi®.

First it is needed to edit the config file that disables the I2C port by default. This setting is

stored in /etc/modprobe.d/raspi-blacklist.conf.

sudo nano /etc/modprobe.d/raspi-blacklist.conf

Once this file is open find this line blacklist i2c-bcm2708 and comment it out by adding # to

the front of it.

#blacklist i2c-bcm2708

Edit /etc/modules

sudo nano /etc/modules

And add the following:

i2c-bcm2708
i2c-dev
rtc-ds1307

Add the modules to the kernel (they will automatically be added on subsequent boots from
/etc/modules):

sudo modprobe i2c-bcm2708
sudo modprobe i2c-dev
sudo modprobe rtc-ds1307

Reboot the system

sudo reboot

Install I2C tools

sudo apt-get install i2c-tools

Look for ID #68 with i2cdetect. This must be done in two alternative ways:

¶ On a 256MB Raspberry Pi Model A+:

sudo i2cdetect ςy 0

¶ On a 512MB Raspberry Pi Model B+:

sudo i2cdetect ςy 1

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

The result should look like:

Figure 3 I2C UPS PIco Interface and Simulated DS1307 Clock detection

Then, running as root, do the following for model of RaspberryPi® you have

¶ On a 256MB Raspberry Pi Model A+:

sudo bash
echo ds1307 0x68 > /sys/class/i2c-adapter/i2c-0/new_device
exit

¶ On a 512MB Raspberry Pi Model B+:

sudo bash
echo ds1307 0x68 > /sys/class/i2c-adapter/i2c-1/new_device
exit

The result should look like:

Figure 4 UPS PIco Simulated DS1307 Clock sudo bash commands execution

Then check for time from the clock (which will show Sat 01 Jan 2000 if it is the first time that
it is used):

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

sudo hwclock -r

Then write the current system time to the clock:

sudo hwclock -w

Then edit /etc/rc.local:

sudo nano /etc/rc.local

and add the following before exit 0:

¶ On a 256MB Raspberry Pi Model A+:

echo ds1307 0x68 > /sys/class/i2c-adapter/i2c-0/new_device
hwclock -s

¶ On a 512MB Raspberry Pi Model B+:

echo ds1307 0x68 > /sys/class/i2c-adapter/i2c-1/new_device
hwclock -s

Running the UPS Pico Bootloader

In order to keep UPS PIco module firmware up-to-date, an embedded serial bootloader has

been implemented. In order to upload the new firmware to the UPS PIco a dedicated

bootloader python software needs to be running on the Raspberry Pi®. It is mandatory to

have previously installed the python and I2Ctools. The activation of RTC is not mandatory for

the new firmware uploading.

There are two ways to invoke the bootloader mode and to upload the new firmware:

1. The manually initiated one:

It is invoked when the UPS PIco module starts from UPS PIco RESET UPSR key, when

pressed the KEYA button. The user must press and hold the UPSR button, then

press the KEYA button while the UPSR button is still pressed, then relase the KEYA

button and finally release the UPSR button. As a result the UPS PIco module enters

the bootloader mode, informing you about it, by lighting the red LED. It will keep

waiting for the start of the new firmware uploading as long as needed. The

following command needs to be executed in order to start new firmware uploading

procedure. Please make sure that the new firmware has been already downloaded

and stored onto the Raspberry Pi® mass storage.

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

Figure 5 UPS PIco Keys

sudo python picofu.py -f UPS_PIco.hex

Just after the new firmware starts to upload, the red LED lights off and the blue LED

starts flashing, and keeps flashing until the firmware is completly uploaded. The

following screen will be visible.

Figure 6 UPS PIco uploading new firmware screenshot

2. The automatically initiated one:

It is invoked by running the following command line

sudo i2cset -y 1 0x6b 0x00 0xff && python picofu.py -f UPS_PIco.hex

Execution of this command will light red LED for a short time, and after that the

BLUE LED starts flashing and the new firmware is uploaded. This automatic firmware

upload can be used when the Raspberry Pi® is placed in remote place and need to be

uploaded remotely. This automatic firmware uploading uses the PICo interface

(Peripherals I2C Control – PICo – Interface) which is described in another document.

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

RaspberryPi ̈́File Safe Shutdown Procedure and RaspberryPi ̈́

RUN

The File Safe Shutdown feature guarantees to the user that a proper shutdown of the

RaspberryPi® will be executed when switching off the system. The FSSD (Files Safe Shut

Down) can be executed automatically when some events happen, or on user request by

pressing the FSSD Button. The proper usage of the FSSD needs a Python script running on

the RaspberryPi®. This FSSD script covers also one additional functionality (the RaspberryPi®

RUN) that informs the UPS PIco if the RaspberryPi® is running.

In order to support the File Safe Shutdown procedure, a simple script should be stored on

the RaspberryPi®. There are many simple scripts concerning this matter, which can be easily

found over the internet; however, we provide one example that can be easily implemented.

Scripts could be divided into two basic categories:

¶ Interrupt based

¶ Loop based.

The user of the UPS PIco module is basically free to use his own script; however, the user

should always keep in mind some of the basics of the implemented circuit on the UPS PIco

board:

¶ There are no Pull-Up resistors on the UPS PIco board therefore the user needs to

setup the RaspberryPi® resistors

¶ The Pin which has been dedicated for the FSSD is the pin GPIO.27

¶ The Pin which has been dedicated for the RUN is the pin GPIO.22

¶ Before this functionality will be used, the user needs to put a proper jumper on the

UPS PIco Board otherwise it will not work.

¶ If the user does not need this functionality (which however is highly

recommended), or needs to use these pins for other applications, the GPIO.27 pin

and GPIO.22 pin could be used for other applications provided that the associated

jumpers are open (removed). However some important functionalities will become

unavailable, as the UPS PIco interacts with RaspberryPi® via these pins.

Figure 7 UPS PIco Jumpers

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

The File Safe Shutdown Functionality saves files from any corruption by executing a proper

shutdown of the RaspberryPi®. This is executed when the FSSD Button is pressed for a

longer time than 2 seconds.

If you have initiated the minicom on the RaspberryPi® will also see the following messages

on the screen:

UPS PIco System Started File Safe Shutdown Procedure

Here below describes the simple procedure on how to implement the simplest Python script

used for the Safe File Shutdown.

You have to add some code to enable the Python script created to run when the
RaspberryPi® boots up. Type in:

sudo nano /etc/rc.local

and then add in the following code:

sudo python /home/pi/ picofssd.py

just before the line that says:

exit 0

save and exit, then create a new file with name picofssd.py

sudo nano /home/pi/picofssd.py

The screen below shows the script that need to be entered using nano.

Designed and Manufactured by PiModules and ModMyPi
www.pimodules.com www.modmypi.com

Figure 8 File Safe Shutdown and RUN Python Script - picofssd.py

This python script is also available for download from the website www.pimodules.com .
You can easily check if your script is running by just writing on the command line

sudo python /home/pi/picofssd.py

and then pressing the FSSD button for more than 2 seconds. If you have properly performed
the above tasks, the computer should print on the screen the following message and then
shutdown.

The system is going down for system halt NOW!

After the Safe File Shutdown you can restart your RaspberryPi® using the Reset
Functionality (using the RPiR button) or remove and eter again the power supply. If the
system is running from battery power back-up, then it goes automatically to Low Power
Mode.

http://www.pimodules.com/

